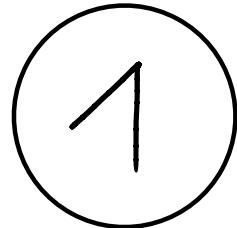


A new approach to Odd Khovanov Homology

slides on my website!

December 5, 2025
Berlin-Brandenburg workshop

Léo Schelstraete
Max Planck Institute for Mathematics (Bonn)



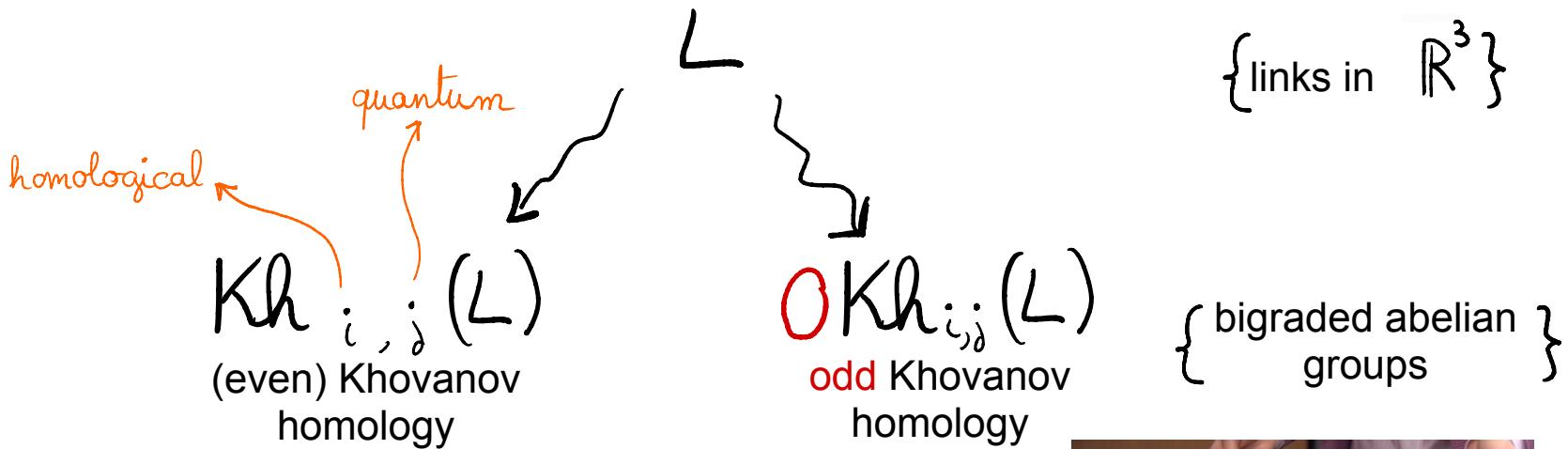
What is...
odd Khovanov homology?

$\{$ links in $\mathbb{R}^3 \}$

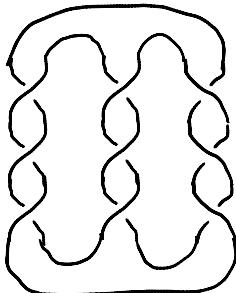
L

$\text{Kh}_{i,j}(L)$
(even) Khovanov
homology

$\{$ bigraded abelian
groups $\}$



- Jones $(L) = \chi_q(Kh(L)) = \chi_q(OKh(L))$
- same skein exact sequence!
- $Kh(L, \mathbb{F}_2) \cong OKh(L, \mathbb{F}_2)$



$P(3, 3, -3)$

even

	-6	-5	-4	-3	-2	-1	0
0							2
-2						1	
-4					1		
-6				2			
-8			1				
-10		1					
-12	1						

odd

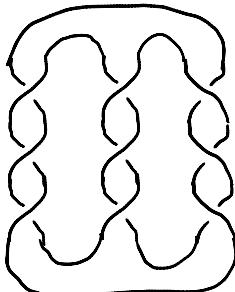
	-6	-5	-4	-3	-2	-1	0
0							2
-2						1	1_3
-4						1	
-6					2		
-8				1			
-10			1				
-12	1						

[Shumakovitch 11]

Theorem (Ebert–S. 25).

Theorem (Migdal–Wehrli 24).

Conjecture (Oszváth–Rasmussen–Szabó 07).



$P(3, 3, -3)$

even

	-6	-5	-4	-3	-2	-1	0
0						2	
-2						1	
-4					1		
-6				2			
-8			1				
-10		1					
-12	1						

odd

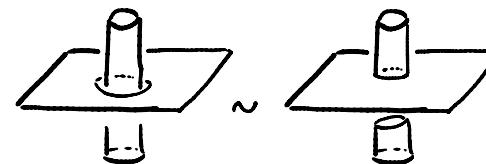
	-6	-5	-4	-3	-2	-1	0
0						2	
-2						1	1
-4						1	
-6					2		
-8				1			
-10			1				
-12	1						

[Shumakovitch 11]

3-torsion!

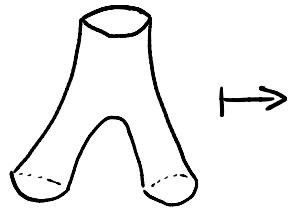
Theorem (Ebert–S. 25). $\text{OKh} (P(n, n, -n))$ has n -torsion.

Theorem (Migdal–Wehrli 24). Odd Khovanov homology detects ribbon moves.



Conjecture (Oszváth–Rasmussen–Szabó 07).

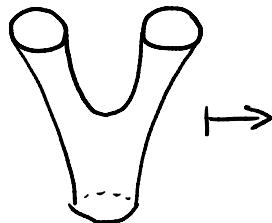
$\text{OKh}(L) \Rightarrow \widehat{\text{HF}}(\Sigma(L))$



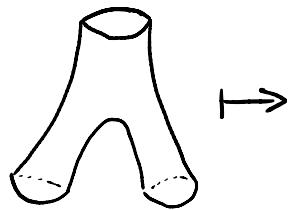
even

$$\begin{array}{c} \mathbb{Z}[e]/e^2 \\ \uparrow \\ \mathbb{Z}[x_1, x_2]/x_1^2, x_2^2 \\ \text{P} \mid x_1, x_2 \mapsto e \end{array}$$

odd



$$\begin{array}{c} \mathbb{Z}[x_1, x_2]/x_1^2, x_2^2 \\ \uparrow \\ (x_1 + x_2) \text{P} \mid x_1 \mapsto x_1 \\ \mathbb{Z}[e]/e^2 \end{array}$$



even

$$\mathbb{Z}[e]/e^2$$

$$\uparrow \text{P} \mid x_1, x_2 \mapsto e$$

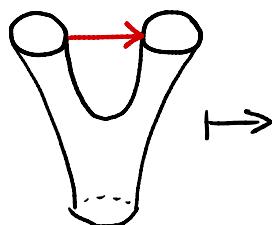
$$\mathbb{Z}[x_1, x_2]/x_1^2, x_2^2$$

odd

$$\Lambda(x)$$

$$\uparrow \text{P} \mid x_1, x_2 \mapsto e$$

$$\Lambda(x_1, x_2)$$



$$\mathbb{Z}[x_1, x_2]/x_1^2, x_2^2$$

$$\uparrow (x_1 + x_2) \text{P} \mid x_1 \mapsto x_1$$

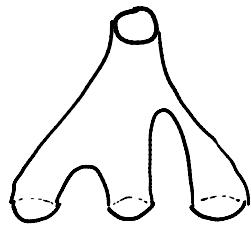
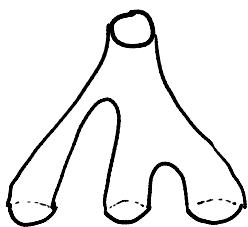
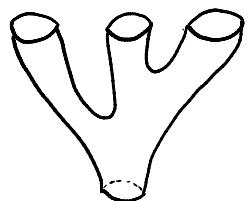
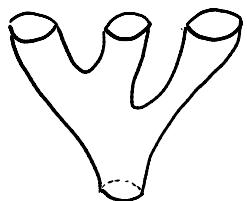
$$\mathbb{Z}[e]/e^2$$

$$\Lambda(x_1, x_2)$$

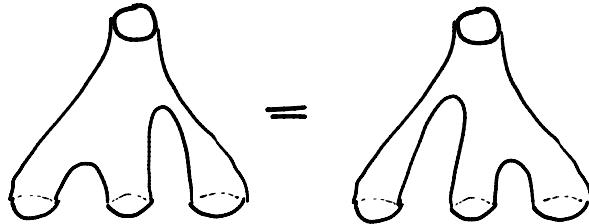
$$\uparrow (x_1 - x_2) \Lambda \text{P} \mid x_1 \mapsto x_1$$

$$\Lambda(x)$$

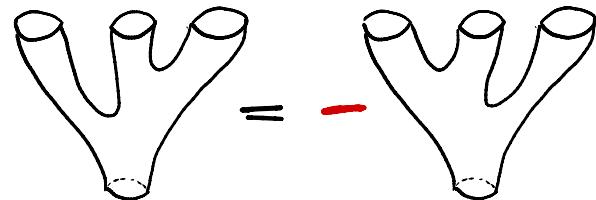
$$\Lambda(x_1, \dots, x_m) = \mathbb{Z}\langle x_1, \dots, x_m \rangle / (x_i x_j = -x_j x_i, x_i^2 = 0)$$



Theorem (Oszváth–Rasmussen–Szabó 07).

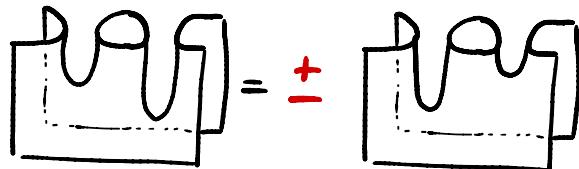


BUT



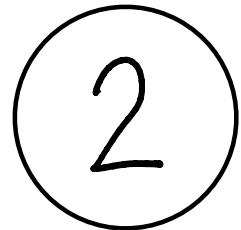
Theorem (Oszváth–Rasmussen–Szabó 07). Still gives a link invariant!

Q1. Extension to tangles?



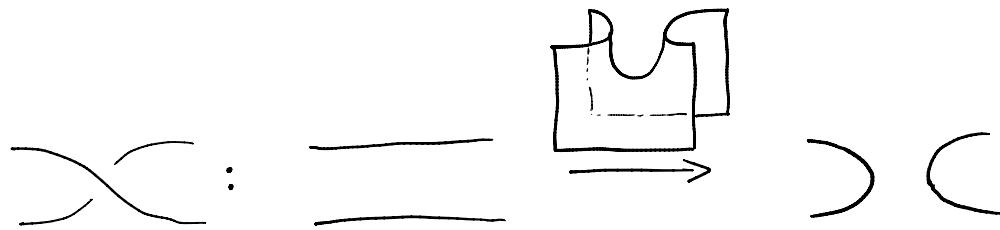
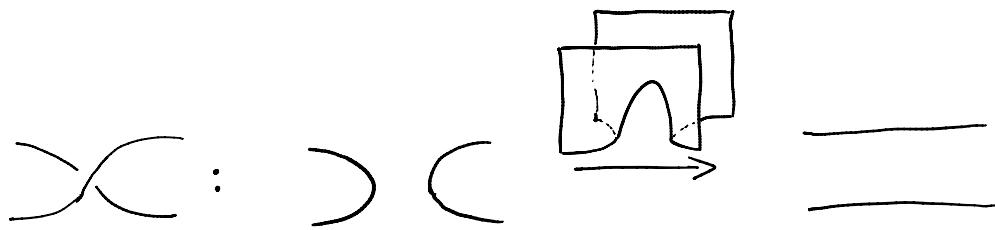
not local!

Q2. What is an “**odd**” link homology, *really*?

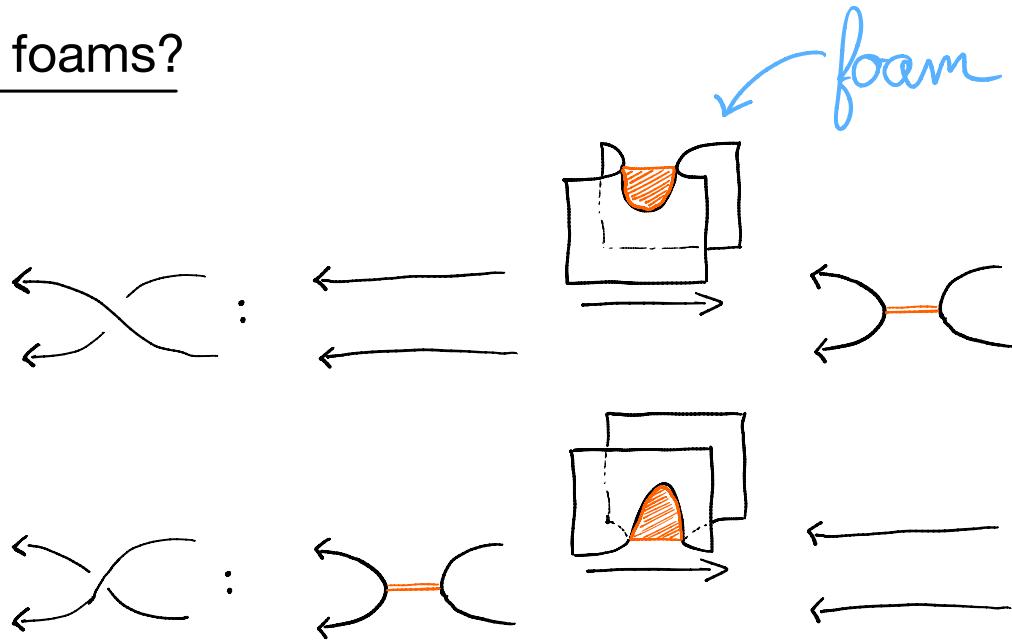


A novel approach: super foams

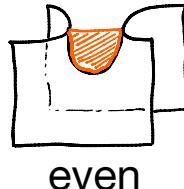
What are... foams?



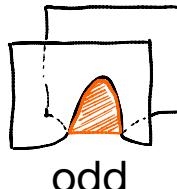
What are... foams?



two saddles

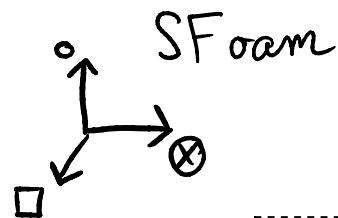
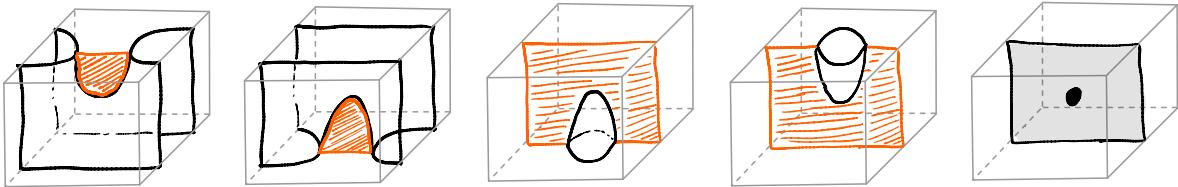
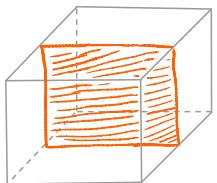
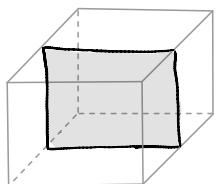
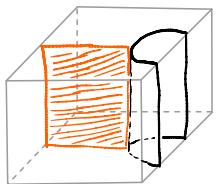
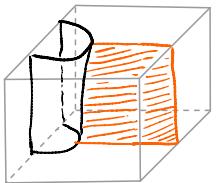


and

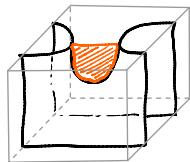
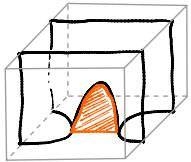
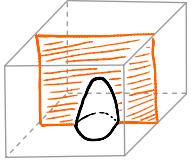
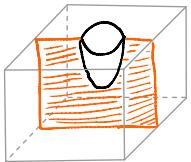
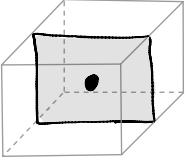


\in

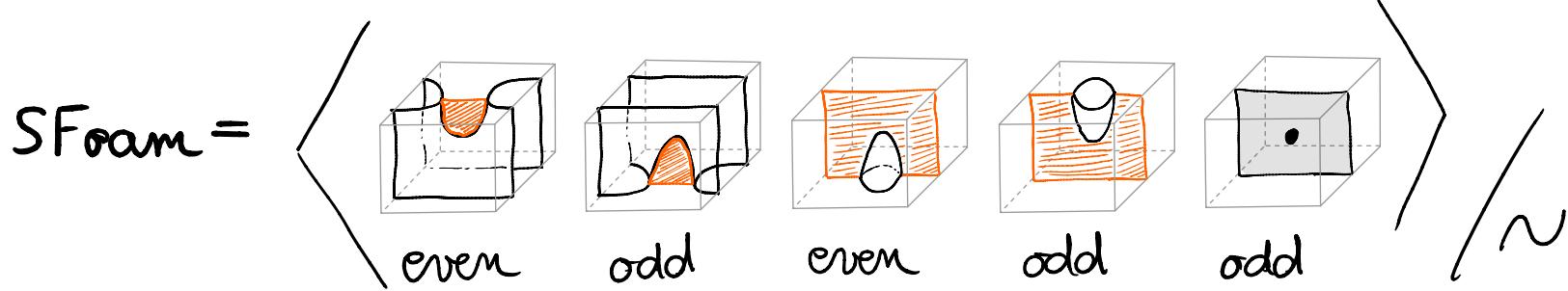
the monoidal
2-supercategory
SFoam



$S_{\text{Foam}} =$



Theorem (S. 25).



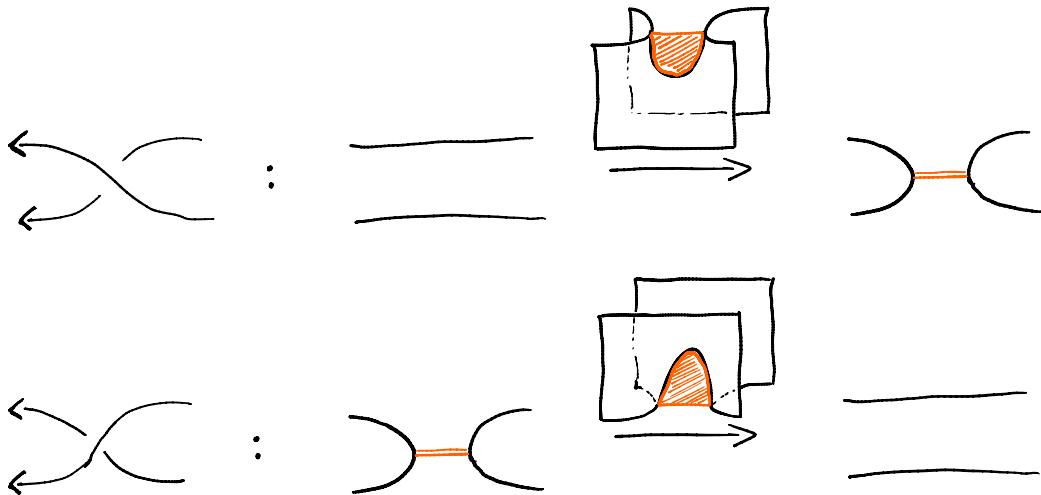
As a **monoidal 2-supercategory**! ("higher superalgebra")

$$\begin{array}{|c|c|} \hline \alpha & \text{ID} \\ \hline \text{ID} & \beta \\ \hline \end{array} = (-1)^{|\alpha||\beta|} \begin{array}{|c|c|} \hline \text{ID} & \alpha \\ \hline \beta & \text{ID} \\ \hline \end{array}$$

super interchange law

Theorem (S. 25). Homspaces in **SFoam** have the expected dimension.

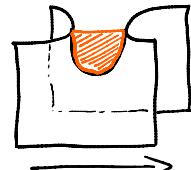
Definition.



Definition. For β a braid, let $\text{Ch}(\beta) \in \text{Ch}(\text{SFoam})$:

$$\text{Ch} \left(\begin{array}{c} \curvearrowleft \\ \curvearrowleft \end{array} \right) :=$$

$$= \overbrace{}$$



$$\curvearrowright \curvearrowleft$$

$$\text{Ch} \left(\begin{array}{c} \curvearrowleft \\ \curvearrowleft \end{array} \right) :=$$

$$\curvearrowright \curvearrowleft$$

$$= \overbrace{}$$

and $\text{Ch}(\beta_1 \otimes \dots \otimes \beta_m) = \text{Ch}(\beta_1) \otimes \dots \otimes \text{Ch}(\beta_m)$.

super \otimes of
chain complexes $\xleftarrow{(\text{s. 20})}$

Theorem (S.-Vaz 23).

Theorem (S.-Vaz 23).

This recovers odd Khovanov homology

SLOGAN. Odd Khovanov homology

arises from the super interaction of

even (✗) and odd (✗) chain complexes.